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Abstract. Let F ⊂ P(ω) be a filter that extends the Fréchet filter and iden-

tify P(ω) with the Cantor set in the natural way. In this paper we prove
that if F is a non-meager P -filter, then both F and ωF are countable dense
homogeneous.

1. Introduction

A separable space X is countable dense homogeneous (CDH ) if every time D
and E are countable dense subsets of X there exists a homeomorphism h : X → X
such that h[D] = E. Using the now well-known back-and-forth argument, Cantor
gave the first example of a CDH space: the real line. Other examples of famous
spaces that are in fact CDH are the Euclidean spaces, the Hilbert cube and the
Cantor set. CDH spaces have motivated research resulting in a number of papers.
See [4] for a small summary of past research and bibliography about CDH spaces.

In their Open Problems in Topology paper ([3]), Fitzpatrick and Zhou posed the
following problems.

1.1. Question (Problem 6) Does there exist a CDH metric space that is not
completely metrizable?

1.2. Question (Part 2 of Problem 4) For which 0-dimensional subsets X of R is
ωX CDH?

Let us therefore restrict to separable metrizable spaces from this point on. Con-
cerning these two problems, the following results have been obtained.

1.3. Theorem [4] Let X be a separable metrizable space.

• If X is CDH and Borel, then X is completely metrizable.
• If ωX is CDH, then X is a Baire space.

1.4. Theorem [2] There is a CDH set of reals X of size ω1 that is a λ-set and
thus, not completely metrizable.
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Notice that the CDH space from Theorem 1.4 is not a Baire space so Theorem
1.3 indicates we cannot use this same technique to answer Question 1.2.

Another recent paper related to Questions 1.3 and 1.4 is [6], where the authors
study ultrafilters as subspaces of the Cantor set. Recall that there is a natural
bijection between the Cantor set and P(ω) via characteristic functions. In this way
we may identify P(ω) with the Cantor set. Thus, any subset of P(ω) can be thought
of as a separable metrizable space. In this way, Medini and Milovich obtained the
following result. For undefined terms about filters and ideals, see [1].

1.5. Theorem [6, Theorems 15, 21, 24, 41, 43 and 44] Assume MA(countable).
Then there exists a non-principal ultrafilter U ⊂ P(ω) with any of the following
properties: (a) U is CDH and a P -point, (b) U is CDH and not a P -point, (c) U is
not CDH and not a P -point, and (d) ωU is CDH.

Since ultrafilters do not even have the Baire property ([1, 4.1.1]), Theorem 1.5
gives us a consistent answer to Question 1.1 and consistent examples concerning
Question 1.2.

The purpose of this paper is to extend these results on ultrafilters to a wider
class of filters in the Cantor set. We have obtained the following result. Notice that
it answers Questions 4, 5 and 10 of [6].

1.6. Theorem Let F be a non-meager P -filter on P(ω) extending the Fréchet
filter. Then both F and ωF are CDH.

It is also true that non-meager filters do not have the Baire property ([1, 4.1.1]).
However, the existence of non-meager P -filters is still an open question (in ZFC).
Nevertheless, it is known that if all P -filters are meager then there is an inner model
with a large cardinal. See [1, 4.4.C] for a detailed description of this problem.

We also show that every CDH filter has to be non-definable in the following
sense.

1.7. Proposition Let F be a filter on P(ω) extending the Fréchet filter. If one of
F or ωF is CDH, then F is non-meager.

By Theorem 1.5 it is consistent that not all CDH filters are P -filters and that
there exist non-CDH filters. An ideal situation would be to solve the following
problems.

1.8. Question Give a nice combinatorial characterization of CDH filters.

1.9. Question Is there a CDH filter (ultrafilter) in ZFC? Is there a non-CDH and
non-meager filter (ultrafilter) in ZFC?

2. Proofs of our results

For any set X, let [X]<ω and [X]ω denote the set of its finite and countable
infinite subsets, respectively. Also <ωX =

⋃
{nX : n < ω}. The symbol A − B

will denote the set theoretic difference of A minus B. Also, A 4 B denotes the
symmetric difference of A and B. Notice that (P(ω),4) is a topological group, it
corresponds to addition modulo 2 in (ω2,+).
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Given a filter F ⊂ P(ω), the dual ideal F∗ = {A ⊂ ω : ω − A ∈ F} is homeo-
morphic to F by means of the map that takes each subset of ω to its complement.
So we may alternatively speak about a filter or its dual ideal. In particular, the
following result is better expressed in the language of ideals. Its proof follows from
[6, Lemma 20].

2.1. Lemma Let I ⊂ P(ω) be an ideal, h : P(ω) → P(ω) a homeomorphism and
D a countable dense subset of I. If there exists x ∈ I such that {d 4 h(d) : d ∈
D} ⊂ P(x) , then h[I] = I.

Let X ⊂ [ω]ω. A tree T ⊂ <ω([ω]<ω) is called a X -tree of finite subsets if for each
s ∈ T there is Xs ∈ X such that for every a ∈ [Xs]

<ω we have s_a ∈ T . It turns
out that non-meager P -filters have a very useful combinatorial characterization as
follows.

2.2. Lemma [5, Lemma 1.3] Let F be a filter on P(ω) that extends the Fréchet
filter. Then F is a non-meager P -filter if and only if every F-tree of finite subsets
has a branch whose union is in F .

Now we prove a combinatorial property that will allow us to construct autohome-
omorphisms of the Cantor set that restrict to ideals. For x ∈ P(ω), let χ(x) ∈ ω2
be its characteristic function.

2.3. Lemma Let I be a non-meager P -ideal that contains all finite subsets of
P(ω) and D0, D1 be two countable dense subsets of I. Then there exists x ∈ I
such that

(i) for each d ∈ D0 ∪D1, d ⊂∗ x and
(ii) for each i ∈ 2, d ∈ Di, n < ω and t ∈ n∩x2, there exists e ∈ D1−i such that

d− x = e− x and χ(e) �n∩x= t.

Proof. Let F be the dual filter of I (so that I = F∗). We will construct an
F-tree of finite subsets T and use Lemma 2.2 to find x ∈ I with the properties
listed. Let us give an enumeration (D0 ∪D1)× <ω2 = {(dn, tn) : n < ω} such that
{dn : n ≡ i (mod 2)} = Di for i ∈ 2.

The definition of T will be by induction. For each s ∈ T we also define n(s) < ω,
Fs ∈ F and φs : dom(s) → D0 ∪D1 so that the following properties hold.

(1) ∀s, t ∈ T (s ( t ⇒ n(s) < n(t)),
(2) ∀s ∈ T ∀k < dom(s) (s(k) ⊂ n(s �k+1)− n(s �k)),
(3) ∀s, t ∈ T (s ⊂ t ⇒ Ft ⊂ Fs),
(4) ∀s ∈ T (Fs ⊂ ω − n(s)),
(5) ∀s, t ∈ T (s ⊂ t ⇒ φs ⊂ φt),
(6) ∀s ∈ T, if k = dom(s) ((dk−1 ∪ φs(k − 1))− n(s) ⊂ ω − Fs).

Since ∅ ∈ T , let n(∅) = 0 and F∅ = ω. Assume we have s ∈ T and a ∈ Fs,
we have to define everything for s_a. Let k = dom(s). We start by defining
n(s_a) = max {k,max (a)} + 1. Next we define φs_a, we only have to do it at k
because of (5). We have two cases.

Case 1. There exists m < dom(tk) with tk(m) = 1 and m ∈ s(0)∪ . . .∪ s(k− 1).
We simply declare φs_a(k) = dk.
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Case 2. Not Case 1. We define rs_a ∈ n(s_a)2 in the following way.

rs_a(m) =

 dk(m), if m ∈ s(0) ∪ . . . ∪ s(k − 1) ∪ a,
tk(m), if m ∈ dom(tk)− (s(0) ∪ . . . ∪ s(k − 1) ∪ a),
1, in any other case.

Let i ∈ 2 be such that i ≡ k (mod 2). So dk ∈ Di, let φs_a(k) ∈ D1−i be
such that φs_a(k) ∩ n(s_a) = (rs_a)

←(1), this is possible because D1−i is dense
in P(ω). Finaly, define

Fs_a = (Fs ∩ (ω − dk−1) ∩ (ω − φs_a(k − 1)))− n(s_a).

Clearly, Fs_a ∈ F and it is easy to see that conditions (1) - (6) hold.
By Lemma 2.2, there exists a branch {(y0, . . . , yn) : n < ω} of T whose union

y =
⋃
{yn : n < ω} is in F . Let x = ω − y ∈ I. We prove that x is the element we

were looking for. It is easy to prove that (7) implies (i).
We next prove that (ii) holds. Let i ∈ 2, n < ω, t ∈ n∩x2 and d ∈ Di. Let

k < ω be such that (dk, tk) = (d, t′), where t′ ∈ n2 is such that t′ �n∩x= t and
t′ �n−x= 0. Consider step k+1 in the construction. Notice that we are in Case 2 of
the construction and ry�k+1

is defined. Then φy�k+1
(k) = e is an element of D1−i.

It is not very hard to see that d− x = e− x and χ(e) �n∩x= t. This completes the
proof of the Lemma. �

2.4. Lemma If F is a non-meager P -filter, then ωF is homeomorphic to a non-
meager P -filter.

Proof. Let

G = {A ⊂ ω × ω : ∀n < ω(A ∩ (ω × {n}) ∈ F)}.
It is easy to see that G is a filter on ω × ω and that it is a P -filter if F is. To see
that G is non-meager if F is, use the characterization in [1, Theorem 4.1.2]. �

We now have everything cooked up to prove our results.

Proof of Theorem 1.6. By Lemma 2.4, it is enough to prove that F is CDH. Let
I = F∗, it is enough to prove that I is CDH. Let D0 and D1 be two countable
dense subsets of I. Let x ∈ I be given by Lemma 2.3.

We will construct a homeomorphism h : P(ω) → P(ω) such that h[D0] = D1

and

(?) ∀d ∈ D (d4 h(d) ⊂ x).

By Lemma 2.1, h[I] = I and we will have finished.
We shall define h by approximations. By this we mean the following. We will

give a strictly increasing sequence {n(k) : k < ω} ⊂ ω and in step k < ω a
homeomorphism (permutation) hk : P(n(k)) → P(n(k)) such that

(∗) ∀r < s < ω ∀a ∈ P(n(k)) (hs(a) ∩ n(r) = hr(a ∩ n(r))).

By (∗), we can define h : P(ω) → P(ω) to be the inverse limit of the hk, which
is a homeomorphism.

Let D0 ∪ D1 = {dn : n < ω} in such a way that {dn : n ≡ i (mod 2)} = Di

for i ∈ 2. To make sure that h[D0] = D1, in step k we have to decide the value
of h(dk) when k is even and the value of h−1(ek) when k is odd. We do this by
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approximating a bijection π : D0 → D1 in ω steps. In step s < ω, we would like to
have π defined in some finite set so that we have the following conditions:

(a)s if r < s is even, then hs(dr ∩ n(s)) = π(dr) ∩ n(s), and
(b)s if r < s is odd, then hs(dr ∩ n(s)) = π−1(dr) ∩ n(s).

Clearly ∀s < ω((a)s ∧ (b)s) ⇔ h[D] = E. As we do the construction, we need to
take care that the following technical condition holds.

(c)s ∀k ∈ n(s)− x ∀a ∈ P(n(s)) (k ∈ a ⇔ k ∈ hs(a))

We also require that π satisfy the following condition that implies (?).

(??) ∀d ∈ D0 (d− x = π(d)− x).

Assume that we have defined n(0) < . . . < n(s− 1), π ∪ π−1 in {dk : k < s} and
h0, . . . , hs−1 in such a way that (a)s−1, (b)s−1 and (c)s−1 hold. Let us consider the
case when s is even, the other case is treated in a similar fashion.

If ds = π−1(dk) for some odd k < s, let n(s) = n(s− 1) + 1. It is easy to define
hs so that it is compatible with hs−1 in the sense of (∗) and in such a way that
(a)s, (b)s and (c)s hold. So we may assume this is not the case.

Notice that the set S = {dk : k < s + 1} ∪ {π(dk) : k < s, k ≡ 0 (mod 2)} ∪
{π−1(dk) : k < s, k ≡ 1 (mod 2)} is finite. Choose p < ω so that ds − x ⊂ p. Let
r0 = hs−1(ds ∩ n(s − 1)) ∈ P(n(s − 1)). Choose n(s − 1) < m < ω and t ∈ m∩x2
in such a way that t←(1) ∩ n(s − 1) = r0 ∩ n(s − 1) ∩ x and t is not extended
by any element of {χ(a) : a ∈ S}. By Lemma 2.3, there exists e ∈ E such that
ds − x = e − x and χ(e) �m∩x= t. Notice that e /∈ S and χ(e) �n(s−1)= r0. We
define π(ds) = e. Notice that (??) holds for ds.

Now that we have chosen π(ds), let n(s) > max (p,m) be such that there are no
two distinct a, b ∈ S ∪ {π(ds)} with a∩ n(s) = b∩ n(s). Topologically, all elements
of S ∪ {π(ds)} are contained in distinct basic open sets of size 1/n(s).

We finally define the bijection hs : P(n(s)) → P(n(s)). For this part of the
proof we will use characteristic functions instead of subsets of ω (otherwise the
notation would become cumbersome). Therefore, we may say hk : n(k)2 → n(k)2
is a homeomorphism for k < s. Recall that we want to preserve propertes (∗) and
(c)s. Notice that for each pair (q, q′) ∈ n(s−1)2 × n(s)−x2 of compatible functions
we have that (hs−1(q), q

′) are compatible by (c)s−1. Thus, in the construction we
may ask that

(O) ∀a ∈ n(s)2 (q ∪ q′ ⊂ a ⇔ hs−1(q) ∪ q′ ⊂ hs(a)).

Notice that O implies (∗) and (c)s. So for each pair (q, q′) ∈ n(s−1)2 × n(s)−x2
of compatible functions we only have to find a bijection g : T 2 → T 2, where T =
(n(s) ∩ x)− n(s− 1) (that may depend on such pair) and define hs :

n(s)2 → n(s)2
as

hs(a) = hs−1(q) ∪ q′ ∪ g(f �T ),
whenever a ∈ n(s)2 and q ∪ q′ ⊂ a. There is only one restriction in the definition of
g and it is imposed by conditions (a)s and (b)s; namely that g is compatible with
the bijection π �S∩D0 . But by the choice of n(s) this is easy to do. Thus, (a)s and
(b)s hold. This finishes the inductive step and the proof.

�

Proof of Proposition 1.7. Let X ∈ {F , ωF} and assume X is CDH. If F is the
Fréchet filter, then F is countable and cannot be CDH. If F is not the Fréchet
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filter, there exists x ∈ F such that ω − x is infinite. Thus, {y : x ⊂ y ⊂ ω} is a
copy of the Cantor set contained in F . Further, ωF always contains a copy of the
Cantor set. So it is always true that X contains a copy C of the Cantor set.

Assume that F is meager, let us arrive to a contradiction. First, let us prove
that ωF is also meager. Notice that F∗ is a topological subgroup of (P(ω),4) so
ωF is homogeneous. So, assuming ωF is not meager, then it is a Baire space by
[6, Proposition 3]. Let π : ωF → F be the projection to the first coordinate, then
π is an open map. It is easy to see that this implies that F is a Baire space. This
contradiction implies that ωF is meager.

So we have that X is a meager-in-itself space that contains a Cantor set C. Let
D ⊂ X be a countable dense subset of X such that D ∩ C is dense in C. By [4,
Lemma 2.1], it is possible to find a countable dense subset E of X that is a Gδ set
relative to X. Let h : X → X be a homeomorphism such that h[D] = E. Then
h[D ∩ C] is a countable dense subset of the Cantor set h[C] that is a relative Gδ

subset of h[C], this is impossible. This contradiction shows that F is non-meager
and completes the proof. �
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E-mail address, Hrušák: michael@matmor.unam.mx

Centro de Ciencias Matemáticas, UNAM, A.P. 61-3, Xangari, Morelia, Michoacán,
58089, México


